Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation

نویسندگان

  • Xiaobing Feng
  • Michael Neilan
چکیده

This paper develops and analyzes finite element Galerkin and spectral Galerkin methods for approximating viscosity solutions of the fully nonlinear Monge-Ampère equation det(D2u0) = f (> 0) based on the vanishing moment method which was developed by the authors in [17, 15]. In this approach, the Monge-Ampère equation is approximated by the fourth order quasilinear equation −ε∆2uε + det D2uε = f accompanied by appropriate boundary conditions. This new approach allows one to construct convergent Galerkin numerical methods for the fully nonlinear Monge-Ampère equation (and other fully nonlinear second order partial differential equations), a task which has been impracticable before. In this paper, we first develop some finite element and spectral Galerkin methods for approximating the solution uε of the regularized fourth order problem. We then derive optimal order error estimates for the proposed numerical methods. In particular, we track explicitly the dependence of the error bounds on the parameter ε, for the error uε − uh. Due to the strong nonlinearity of the underlying equation, the standard perturbation argument for error analysis of finite element approximations of nonlinear problems does not work here. To overcome the difficulty, we employ a fixed point technique which strongly makes use of the stability property of the linearized problem and its finite element approximations. Finally, using the Aygris finite element method as an example, we present a detailed numerical study of the rates of convergence in terms of powers of ε for the error u0 − uh, and numerically examine what is the “best” mesh size h in relation to ε in order to achieve these rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Semi-Lagrangian Methods for the Monge-Ampère Equation on Unstructured Grids

This paper is concerned with developing and analyzing convergent semi-Lagrangian methods for the fully nonlinear elliptic Monge–Ampère equation on general triangular grids. This is done by establishing an equivalent (in the viscosity sense) Hamilton–Jacobi–Bellman formulation of the Monge–Ampère equation. A significant benefit of the reformulation is the removal of the convexity constraint from...

متن کامل

Pseudo Time Continuation and Time Marching Methods for Monge-ampère Type Equations

We discuss the performance of three numerical methods for the fully nonlinear Monge-Ampère equation. The first two are pseudo time continuation methods while the third is a pure pseudo time marching algorithm. The pseudo time continuation methods are shown to converge for smooth data on a uniformly convex domain. We give numerical evidence that they perform well for the nondegenerate Monge-Ampè...

متن کامل

Pseudo transient continuation and time marching methods for Monge-Ampère type equations

We present two numerical methods for the fully nonlinear elliptic MongeAmpère equation. The first is a pseudo transient continuation method and the second is a pure pseudo time marching method. The methods are proved to converge for smooth solutions. We give numerical evidence that they are also able to capture the viscosity solution of the Monge-Ampère equation. Even in the case of the degener...

متن کامل

A note on Monge-Ampère Keller-Segel equation

This note studies the Monge–Ampère Keller–Segel equation in a periodic domain Td(d ≥ 2), a fully nonlinear modification of the Keller–Segel equation where the Monge–Ampère equation det(I + ∇2v) = u + 1 substitutes for the usual Poisson equation ∆v = u. The existence of global weak solutions is obtained for this modified equation. Moreover, we prove the regularity in L∞  0, T ;L∞ ∩W 1,1+γ(Td) ...

متن کامل

Mixed Interior Penalty Discontinuous Galerkin Methods for Fully Nonlinear Second Order Elliptic and Parabolic Equations in High Dimensions

This article is concerned with developing efficient discontinuous Galerkin methods for approximating viscosity (and classical) solutions of fully nonlinear second-order elliptic and parabolic partial differential equations (PDEs) including the Monge–Ampère equation and the Hamilton–Jacobi–Bellman equation. A general framework for constructing interior penalty discontinuous Galerkin (IP-DG) meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2011